Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrodinger operators

成果类型:
Article
署名作者:
Parnovski, Leonid; Shterenberg, Roman
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2012.176.2.8
发表日期:
2012
页码:
1039-1096
关键词:
bethe-sommerfeld conjecture
摘要:
We prove the complete asymptotic expansion of the integrated density of states of a Schrodinger operator H = -Delta + b acting in R-d when the potential b is either smooth periodic, or generic quasi-periodic (finite linear combination of exponentials), or belongs to a wide class of almost-periodic functions.