2-source dispersers for no(1) entropy, and Ramsey graphs beating the Frankl-Wilson construction
成果类型:
Article
署名作者:
Barak, Boaz; Rao, Anup; Shaltiel, Ronen; Wigderson, Avi
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2012.176.3.3
发表日期:
2012
页码:
1483-1543
关键词:
randomness
extractors
FIELDS
摘要:
The main result of this paper is an explicit disperser for two independent sources on n bits, each of min-entropy k = 2(log beta n), where beta < 1 is some absolute constant. Put differently, setting N = 2(n) and K = 2(k), we construct an explicit N x N Boolean matrix for which no K x K sub-matrix is monochromatic. Viewed as the adjacency matrix of a bipartite graph, this gives an explicit construction of a bipartite K-Ramsey graph of 2N vertices. This improves the previous bound of k = o(n) of Barak, Kindler, Shaltiel, Sudakov and Wigderson. As a corollary, we get a construction of a 2n(o(1)) (nonbipartite) Ramsey graph of 2(n) vertices, significantly improving the previous bound of 2(<(O)over tilde>(root n)) due to Frankl and Wilson. We also give a construction of a new independent sources extractor that can extract from a constant number of sources of polynomially small min-entropy with exponentially small error. This improves independent sources extractor of Rao, which only achieved polynomially small error. Our dispersers combine ideas and constructions from several previous works in the area together with some new ideas. In particular, we rely on the extractors of Raz and Bourgain as well as an improved version of the extractor of Rao. A key ingredient that allows us to beat the barrier of k = root n is a new and more complicated variant of the challenge-response mechanism of Barak et al. that allows us to locate the min-entropy concentrations in a source of low min-entropy.