The Weil-Petersson geodesic flow is ergodic
成果类型:
Article
署名作者:
Burns, K.; Masur, H.; Wilkinson, A.
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2012.175.2.8
发表日期:
2012
页码:
835-908
关键词:
extension
dimension
SURFACES
SPACE
摘要:
We prove that the geodesic flow for the Weil-Petersson metric on the moduli space of Riemann surfaces is ergodic (and in fact Bernoulli) and has finite, positive metric entropy.