A class of superrigid group von Neumann algebras

成果类型:
Article
署名作者:
Ioana, Adrian; Popa, Sorin; Vaes, Stefaan
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2013.178.1.4
发表日期:
2013
页码:
231-286
关键词:
w-rigid groups ii1 factors malleable actions bernoulli actions free-products property-t rings CLASSIFICATION computations hyperfinite
摘要:
We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely remembers the group G. More precisely, if L(G) is isomorphic to the von Neumann algebra L Lambda of an arbitrary countable group Lambda, then Lambda must be isomorphic to G. This represents the first superrigidity result pertaining to group von Neumann algebras.