Finite time singularities for Lagrangian mean curvature flow

成果类型:
Article
署名作者:
Neves, Andre
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2013.177.3.5
发表日期:
2013
页码:
1029-1076
关键词:
parabolic equations SURFACES CURVES intersections
摘要:
Given any embedded Lagrangian on a four-dimensional compact Calabi-Yau, we find another Lagrangian in the same Hamiltonian isotopy class that develops a finite time singularity under mean curvature flow. This contradicts a weaker version of the Thomas-Yau conjecture regarding long time existence and convergence of Lagrangian mean curvature flow.