Highly connected 7-manifolds and non-negative sectional curvature
成果类型:
Article
署名作者:
Goette, S.; Kerin, M.; Shankar, K.
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2020.191.3.3
发表日期:
2020
页码:
829-892
关键词:
equivariant eta-invariants
exotic spheres
CLASSIFICATION
MANIFOLDS
biquotients
s-3-bundles
COHOMOLOGY
摘要:
In this article, a six-parameter family of highly connected 7-manifolds which admit an SO(3)-invariant metric of non-negative sectional curvature is constructed and the Eells-Kuiper invariant of each is computed. In particular, it follows that all exotic spheres in dimension 7 admit an SO(3)-invariant metric of non-negative curvature.