Fractal uncertainty in higher dimensions

成果类型:
Article
署名作者:
Cohen, Alex
刊物名称:
ANNALS OF MATHEMATICS
ISSN/ISSBN:
0003-486X
DOI:
10.4007/annals.2025.202.1.4
发表日期:
2025
页码:
265-307
关键词:
spectral gaps
摘要:
We prove that if a fractal set in Rd avoids lines in a certain quantitative sense, which we call line porosity, then it has a fractal uncertainty principle. The main ingredient is a new higher-dimensional Beurling-Malliavin multiplier theorem.