Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder

成果类型:
Article
署名作者:
Wang, WM
署名单位:
Universite Paris Saclay; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s002220100169
发表日期:
2001
页码:
365-398
关键词:
spectrum smoothness diffusion density absence STATES PROOF
摘要:
lWe prove Anderson localization with the mean-field Lyapunov exponent and Poisson statistics for eigenvalue spacing for the multi-dimensional Anderson model at weak disorder. These results are obtained by developing the supersymmetric formalism initiated in [W1] (see also [SjW]).
来源URL: