Topological recursive relations in H2g(Mg,n)
成果类型:
Article
署名作者:
Ionel, EN
署名单位:
University of Wisconsin System; University of Wisconsin Madison
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s002220100205
发表日期:
2002
页码:
627-658
关键词:
moduli space
CURVES
摘要:
We show that any degree at least g monomial in descendant or tautological classes vanishes on M-g,M-n when g greater than or equal to 2. This generalizes a result of Looijenga and proves a version of Getzler's conjecture. The method we use is the study of the relative Gromov-Witten invariants of P-1 relative to two points combined with the degeneration formulas of [IP1].
来源URL: