The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels
成果类型:
Article
署名作者:
Golse, F; Saint-Raymond, L
署名单位:
Institut Universitaire de France; Universite PSL; Ecole Normale Superieure (ENS); Sorbonne Universite
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-003-0316-5
发表日期:
2004
页码:
81-161
关键词:
fourier integral-operators
incompressible fluid-mechanics
compactness result
kinetic-equations
global existence
singular limits
dynamic limits
bgk model
摘要:
The present work establishes a Navier-Stokes limit for the Boltzmann equation considered over the infinite spatial domain R-3. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations whose limit points (in the w-L-1 topology) are governed by Leray solutions of the limiting Navier-Stokes equations. This completes the arguments in Bardos-Golse-Levermore [Commun. Pure Appl. Math. 46(5), 667-753 (1993)] for the steady case, and in Lions-Masmoudi [Arch. Ration. Mech. Anal. 158(3), 173-193 (2001)] for the time-dependent case.
来源URL: