Proof of a conjecture of Zahariuta concerning a problem of Kolmogorov on the ε-entropy

成果类型:
Article
署名作者:
Nivoche, S
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-004-0372-5
发表日期:
2004
页码:
413-450
关键词:
extremal plurisubharmonic-functions pluricomplex green-function capacity notions sets
摘要:
We prove a conjecture of Zahariuta which itself solves a problem of Kolmogorov on the epsilon-entropy of some classes of analytic functions. For a given holomorphically convex compact subset K in a pseudoconvex domain D in C-n, Zahariuta's conjecture consists in approximating the relative extremal function u* (K,D), uniformly on any compact subset of D \ K, by pluricomplex Green functions on D with logarithmic poles in the compact subset K.
来源URL: