Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry
成果类型:
Article
署名作者:
Welschinger, JY
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Ecole Normale Superieure de Lyon (ENS de LYON)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-005-0445-0
发表日期:
2005
页码:
195-234
关键词:
curves
摘要:
We first build the moduli spaces of real rational pseudo-holomorphic curves in a given real symplectic 4-manifold. Then, following the approach of Gromov and Witten [3,19,11], we define invariants under deformation of real symplectic 4-manifolds. These invariants provide lower bounds for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of points.