Singular symplectic moduli spaces
成果类型:
Article
署名作者:
Kaledin, D; Lehn, M; Sorger, C
署名单位:
Johannes Gutenberg University of Mainz; Nantes Universite; Institut Universitaire de France; Nantes Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-005-0484-6
发表日期:
2006
页码:
591-614
关键词:
marsden-weinstein reductions
stable sheaves
REPRESENTATIONS
VARIETIES
MANIFOLDS
ring
摘要:
Moduli spaces of semistable sheaves on a K3 or abelian surface with respect to a general ample divisor are shown to be locally factorial, with the exception of symmetric products of a K3 or abelian surface and the class of moduli spaces found by O'Grady. Consequently, since singular moduli space that do not belong to these exceptional cases have singularities in codimension >= 4 they do no admit projective symplectic resolutions.