Cohomology of tilting modules over quantum groups and t-structures on derived categories of coherent sheaves

成果类型:
Article
署名作者:
Bezrukavnikov, Roman
署名单位:
Massachusetts Institute of Technology (MIT)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-006-0514-z
发表日期:
2006
页码:
327-357
关键词:
Algebra
摘要:
The paper is concerned with cohomology of the small quantum group at a root of unity, and of its upper triangular subalgebra, with coefficients in a tilting module. It turns out to be related to irreducible objects in the heart of a certain t-structure on the derived category of equivariant coherent sheaves on the Springer resolution, and to equivariant coherent IC sheaves on the nil-cone. The support of the cohomology is described in terms of cells in affine Weyl groups. The basis in the Grothendieck group provided by the cohomology modules is shown to coincide with the Kazhdan-Lusztig basis, as predicted by J. Humphreys and V. Ostrik. The proof is based on the results of [ABG ], [AB] and [B], which allow us to reduce the question to purity of IC sheaves on affine flag varieties.
来源URL: