Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szego asymptotics

成果类型:
Article
署名作者:
Damanik, David; Simon, Barry
署名单位:
California Institute of Technology
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-005-0485-5
发表日期:
2006
页码:
1-50
关键词:
dimensional schrodinger-operators SUM-RULES Orthogonal polynomials spectral properties wave-operators integration SCATTERING
摘要:
We provide necessary and sufficient conditions for a Jacobi matrix to produce orthogonal polynomials with Szego asymptotics off the real axis. A key idea is to prove the equivalence of Szego asymptotics and of Jost asymptotics for the Weyl solution. We also prove L-2 convergence of Szego asymptotics on the spectrum.
来源URL: