A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres

成果类型:
Article
署名作者:
Habiro, Kazuo
署名单位:
Kyoto University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-007-0071-0
发表日期:
2008
页码:
1-81
关键词:
finite-type invariants quantum-invariants polynomial invariant ohtsukis invariants psu(n) invariants kirby-calculus 3-manifolds REPRESENTATIONS CATEGORIES ALGEBRAS
摘要:
We construct an invariant J(M) of integral homology spheres M with values in a completion (Z[q]) over cap of the polynomial ring Z[ q] such that the evaluation at each root of unity. gives the the SU( 2) Witten-Reshetikhin-Turaev invariant tau(zeta) ( M) of M at. Thus zeta unifies all the SU( 2) Witten Reshetikhin -Turaev invariants of M. It also follows that tau(zeta) (M) as a function on. behaves like an analytic function defined on the set of roots of unity.
来源URL: