Beurling-Malliavin theory for Toeplitz kernels
成果类型:
Article
署名作者:
Makarov, N.; Poltoratski, A.
署名单位:
Texas A&M University System; Texas A&M University College Station; California Institute of Technology
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-010-0234-2
发表日期:
2010
页码:
443-480
关键词:
spaces
摘要:
We consider the family of Toeplitz operators T-J (S) over bara acting in the Hardy space H-2 in the upper halfplane; J and S are given meromorphic inner functions, and a is a real parameter. In the case where the argument of S has a power law type behavior on the real line, we compute the critical value c(J, S) = inf {a : ker T-J (S) over bara not equal 0}. The formula for c(J, S) generalizes the Beurling-Malliavin theorem on the radius of completeness for a system of exponentials.