Blowup dynamics for smooth data equivariant solutions to the critical Schrodinger map problem
成果类型:
Article
署名作者:
Merle, Frank; Raphael, Pierre; Rodnianski, Igor
署名单位:
CY Cergy Paris Universite; Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Princeton University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-012-0427-y
发表日期:
2013
页码:
249-365
关键词:
harmonic maps
up rate
SINGULARITIES
STABILITY
EVOLUTION
SPACE
mass
摘要:
We consider the energy critical Schrodinger map problem with the 2-sphere target for equivariant initial data of homotopy index k=1. We show the existence of a codimension one set of smooth well localized initial data arbitrarily close to the ground state harmonic map in the energy critical norm, which generates finite time blowup solutions. We give a sharp description of the corresponding singularity formation which occurs by concentration of a universal bubble of energy.
来源URL: