On uniqueness of tangent cones for Einstein manifolds

成果类型:
Article
署名作者:
Colding, Tobias Holck; Minicozzi, William P., II
署名单位:
Massachusetts Institute of Technology (MIT); Johns Hopkins University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-013-0474-z
发表日期:
2014
页码:
515-588
关键词:
ricci curvature BEHAVIOR SPACES bounds
摘要:
We show that for any Ricci-flat manifold with Euclidean volume growth the tangent cone at infinity is unique if one tangent cone has a smooth cross-section. Similarly, for any noncollapsing limit of Einstein manifolds with uniformly bounded Einstein constants, we show that local tangent cones are unique if one tangent cone has a smooth cross-section.
来源URL: