On the local-global conjecture for integral Apollonian gaskets With an appendix by Peter P. Varju

成果类型:
Article
署名作者:
Bourgain, Jean; Kontorovich, Alex
署名单位:
Institute for Advanced Study - USA; Yale University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-013-0475-y
发表日期:
2014
页码:
589-650
关键词:
circle packings random-walks expansion generation geometry
摘要:
We prove that a set of density one satisfies the local-global conjecture for integral Apollonian gaskets. That is, for a fixed integral, primitive Apollonian gasket, almost every (in the sense of density) admissible (passing local obstructions) integer is the curvature of some circle in the gasket.
来源URL: