On the Cauchy problem for gravity water waves

成果类型:
Article
署名作者:
Alazard, T.; Burq, N.; Zuily, C.
署名单位:
Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Saclay
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-014-0498-z
发表日期:
2014
页码:
71-163
关键词:
well-posedness free-surface sobolev spaces EQUATIONS SINGULARITIES EXISTENCE calculus motion
摘要:
We are interested in the system of gravity water waves equations without surface tension. Our purpose is to study the optimal regularity thresholds for the initial conditions. In terms of Sobolev embeddings, the initial surfaces we consider turn out to be only of -class for some and consequently have unbounded curvature, while the initial velocities are only Lipschitz. We reduce the system using a paradifferential approach.
来源URL: