Construction of the Witten-Reshetikhin-Turaev TQFT from conformal field theory

成果类型:
Article
署名作者:
Andersen, Jorgen Ellegaard; Ueno, Kenji
署名单位:
Aarhus University; Hosei University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-014-0555-7
发表日期:
2015
页码:
519-559
关键词:
nielsen-thurston classification mapping class-groups 3-manifold invariants hecke algebras modular categories su(n) invariants kauffman bracket link polynomials quantum groups REPRESENTATIONS
摘要:
In Andersen and Ueno (J Knot Theory Ramif 16:127-202, 2007) we constructed the vacua modular functor based on the sheaf of vacua theory developed in Tsuchiya et al. (Adv Stud Pure Math 19:459-566, 1989) and the abelian analog in Andersen and Ueno (Int J Math 18:919-993, 2007). We here provide an explicit isomorphism from the modular functor underlying the skein-theoretic model for the Witten-Reshetikhin-Turaev TQFT due to Blanchet, Habbeger, Masbaum and Vogel to the vacua modular functor. This thus provides a geometric construction of the TQFT first proposed by Witten and constructed first by Reshetikhin-Turaev from the quantum group .
来源URL: