Stable pairs and the HOMFLY polynomial
成果类型:
Article
署名作者:
Maulik, Davesh
署名单位:
Columbia University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-015-0624-6
发表日期:
2016
页码:
787-831
关键词:
hilbert schemes
hecke algebras
idempotents
points
curve
skein
摘要:
Given a planar curve singularity, we prove a conjecture of Oblomkov-Shende, relating the geometry of its Hilbert scheme of points to the HOMFLY polynomial of the associated algebraic link. More generally, we prove an extension of this conjecture, due to Diaconescu-Hua-Soibelman, relating stable pair invariants on the conifold to the colored HOMFLY polynomial of the algebraic link. Our proof uses wall-crossing techniques to prove a blowup identity on the algebro-geometric side. We prove a matching identity for the colored HOMFLY polynomials of a link using skein-theoretic techniques.
来源URL: