The generic Green-Lazarsfeld Secant Conjecture

成果类型:
Article
署名作者:
Farkas, Gavril; Kemeny, Michael
署名单位:
Humboldt University of Berlin
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-015-0595-7
发表日期:
2016
页码:
265-301
关键词:
syzygy conjecture brill-noether linear series MODULI SPACES CURVES divisors
摘要:
Using lattice theory on special surfaces, calculations on moduli stacks of pointed curves and Voisin's proof of Green's Conjecture on syzygies of canonical curves, we prove the Prym-Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green-Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on general curves.
来源URL: