Angular momenta of relative equilibrium motions and real moment map geometry
成果类型:
Article
署名作者:
Heckman, Gert; Zhao, Lei
署名单位:
Radboud University Nijmegen; Nankai University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-015-0644-2
发表日期:
2016
页码:
671-691
关键词:
convexity properties
n bodies
摘要:
Chenciner and Jim,nez-P,rez (Mosc Math J 13(4):621-630, 2013) showed that the range of the spectra of the angular momenta of all the rigid motions of a fixed central configuration in a general Euclidean space form a convex polytope. In this note we explain how this result follows from a general convexity theorem of O'Shea and Sjamaar in real moment map geometry (Math Ann 31:415-457, 2000). Finally, we provide a representation-theoretic description of the pushforward of the normalized measure under the real moment map for Riemannian symmetric pairs.
来源URL: