Quivers with relations for symmetrizable Cartan matrices I: Foundations

成果类型:
Article
署名作者:
Geiss, Christof; Leclerc, Bernard; Schroeer, Jan
署名单位:
Universidad Nacional Autonoma de Mexico; Universite de Caen Normandie; Centre National de la Recherche Scientifique (CNRS); Institut Universitaire de France; University of Bonn
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-016-0705-1
发表日期:
2017
页码:
61-158
关键词:
maximal rigid objects preprojective algebras REPRESENTATIONS convolution Operators functors rings
摘要:
We introduce and study a class of Iwanaga-Gorenstein algebras defined via quivers with relations associated with symmetrizable Cartan matrices. These algebras generalize the path algebras of quivers associated with symmetric Cartan matrices. We also define a corresponding class of generalized preprojective algebras. For these two classes of algebras we obtain generalizations of classical results of Gabriel, Dlab-Ringel, and Gelfand-Ponomarev. In particular, we obtain new representation theoretic realizations of all finite root systems without any assumption on the ground field.