Eigenvalues and entropy of a Hitchin representation
成果类型:
Article
署名作者:
Potrie, Rafael; Sambarino, Andres
署名单位:
Universidad de la Republica, Uruguay; Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Sorbonne Universite
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-017-0721-9
发表日期:
2017
页码:
885-925
关键词:
hyperconvex representations
anosov-flows
components
SURFACES
摘要:
We show that the critical exponent of a representation rho in the Hitchin component of PSL(d,R) is bounded above, the least upper bound being attained only in the Fuchsian locus. This provides a rigid inequality for the area of a minimal surface on rho\X where X is the symmetric space of PSL(d,R) The proof relies in a construction useful to prove a regularity statement: if the Frenet equivariant curve of rho is smooth, then rho is Fuchsian.