Immortal homogeneous Ricci flows
成果类型:
Article
署名作者:
Boehm, Christoph; Lafuente, Ramiro A.
署名单位:
University of Munster
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-017-0771-z
发表日期:
2018
页码:
461-529
关键词:
long-time behavior
moment map
alekseevskii conjecture
einstein solvmanifolds
space-forms
lie-groups
CURVATURE
solitons
MANIFOLDS
METRICS
摘要:
We show that for an immortal homogeneous Ricci flow solution any sequence of parabolic blow-downs subconverges to a homogeneous expanding Ricci soliton. This is established by constructing a new Lyapunov function based on curvature estimates which come from real geometric invariant theory.
来源URL: