On the nature of the generating series of walks in the quarter plane
成果类型:
Article
署名作者:
Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien; Singer, Michael F.
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Centre National de la Recherche Scientifique (CNRS); Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); North Carolina State University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-018-0787-z
发表日期:
2018
页码:
139-203
关键词:
small steps
摘要:
In the present paper, we introduce a new approach, relying on the Galois theory of difference equations, to study the nature of the generating series of walks in the quarter plane. Using this approach, we are not only able to recover many of the recent results about these series, but also to go beyond them. For instance, we give for the first time hypertranscendency results, i.e., we prove that certain of these generating series do not satisfy any nontrivial nonlinear algebraic differential equation with rational function coefficients.
来源URL: