Koszul modules and Green's conjecture

成果类型:
Article
署名作者:
Aprodu, Marian; Farkas, Gavril; Papadima, Stefan; Raicu, Claudiu; Weyman, Jerzy
署名单位:
Institute of Mathematics of the Romanian Academy; University of Bucharest; Humboldt University of Berlin; University of Notre Dame; University of Connecticut; Jagiellonian University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00894-1
发表日期:
2019
页码:
657-720
关键词:
syzygy conjecture CURVES SPACE COHOMOLOGY geometry divisors
摘要:
We prove a strong vanishing result for finite length Koszul modules, and use it to derive Green's conjecture for every g-cuspidal rational curve over an algebraically closed field documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {k}}}$$\end{document}, with char(k)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}}({{\mathbf {k}}})=0$$\end{document} or char(k)>= g+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}}({{\mathbf {k}}})\ge \frac{g+2}{2}$$\end{document}. As a consequence, we deduce that the general canonical curve of genus g satisfies Green's conjecture in this range. Our results are new in positive characteristic, whereas in characteristic zero they provide a different proof for theorems first obtained in two landmark papers by Voisin. Our strategy involves establishing two key results of independent interest: (1) we describe an explicit, characteristic-independent version of Hermite reciprocity for sl2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {s}}}{{\mathfrak {l}}}_2$$\end{document}-representations; (2) we completely characterize, in arbitrary characteristics, the (non-)vanishing behavior of the syzygies of the tangential variety to a rational normal curve.