Algebraic integrability of foliations with numerically trivial canonical bundle

成果类型:
Article
署名作者:
Horing, Andreas; Peternell, Thomas
署名单位:
Universite Cote d'Azur; Centre National de la Recherche Scientifique (CNRS); University of Bayreuth
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-018-00853-2
发表日期:
2019
页码:
395-419
关键词:
singular spaces
摘要:
Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle such that the second Chern class does not vanish. Combined with the recent works of Druel and Greb-Guenancia-Kebekus this establishes the Beauville-Bogomolov decomposition for minimal models with trivial canonical class.