The Balmer spectrum of the equivariant homotopy category of a finite abelian group
成果类型:
Article
署名作者:
Barthel, Tobias; Hausmann, Markus; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel
署名单位:
University of Copenhagen; University of Regensburg; University of Munster; University of Kentucky
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-018-0846-5
发表日期:
2019
页码:
215-240
关键词:
摘要:
For a finite abelian group A, we determine the Balmer spectrum of SpA, the compact objects in genuine A-spectra. This generalizes the case A=Z/pZ due to Balmer and Sanders (Invent Math 208(1):283-326, 2017), by establishing (a corrected version of) their logp-conjecture for abelian groups. We also work out the consequences for the chromatic type of fixed-points and establish a generalization of Kuhn's blue-shift theorem for Tate-constructions (Kuhn in Invent Math 157(2):345-370, 2004).