Period-index bounds for arithmetic threefolds

成果类型:
Article
署名作者:
Antieau, Benjamin; Auel, Asher; Ingalls, Colin; Krashen, Daniel; Lieblich, Max
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; Yale University; Rutgers University System; Rutgers University New Brunswick; Rutgers University Newark; University of Washington; University of Washington Seattle
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00860-x
发表日期:
2019
页码:
301-335
关键词:
摘要:
The standard period-index conjecture for Brauer groups of p-adic surfaces S predicts that ind(alpha) vertical bar per(alpha)3 for every alpha is an element of Br(Q(p)(S)). Using Gabber's theory of prime-to-l alterations and the deformation theory of twisted sheaves, we prove that ind(alpha) vertical bar per(alpha) 4 for alpha of period prime to 6p, giving the first uniform period-index bounds over such fields.
来源URL: