When Kloosterman sums meet Hecke eigenvalues

成果类型:
Article
署名作者:
Xi, Ping
署名单位:
Xi'an Jiaotong University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00924-y
发表日期:
2020
页码:
61-127
关键词:
sato-tate conjecture automorphic-forms sieve
摘要:
By elaborating a two-dimensional Selberg sieve with asymptotics and equidistributions of Kloosterman sums from l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-adic cohomology, as well as a Bombieri-Vinogradov type mean value theorem for Kloosterman sums in arithmetic progressions, it is proved that for any given primitive Hecke-Maass cusp form of trivial nebentypus, the eigenvalue of the n-th Hecke operator does not coincide with the Kloosterman sum Kl(1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Kl}(1,n)$$\end{document} for infinitely many squarefree n with at most 100 prime factors. This provides a partial negative answer to a problem of Katz on modular structures of Kloosterman sums.