Multiple zeta values in deformation quantization
成果类型:
Article
署名作者:
Banks, Peter; Panzer, Erik; Pym, Brent
署名单位:
University of Oxford; University of Edinburgh; McGill University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-00970-x
发表日期:
2020
页码:
79-159
关键词:
moduli spaces
star product
motives
INTEGRALS
operads
CURVES
摘要:
Kontsevich's 1997 formula for the deformation quantization of Poisson brackets is a Feynman expansion involving volume integrals over moduli spaces of marked disks. We develop a systematic theory of integration on these moduli spaces via suitable algebras of polylogarithms, and use it to prove that Kontsevich's integrals can be expressed as integer-linear combinations of multiple zeta values. Our proof gives a concrete algorithm for calculating the integrals, which we have used to produce the first software package for the symbolic calculation of Kontsevich's formula.