Fourier uniformity of bounded multiplicative functions in short intervals on average
成果类型:
Article
署名作者:
Matomaki, Kaisa; Radziwill, Maksym; Tao, Terence
署名单位:
University of Turku; California Institute of Technology; University of California System; University of California Los Angeles
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00926-w
发表日期:
2020
页码:
1-58
关键词:
inequality
THEOREM
primes
摘要:
Let lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, integral X2Xsup alpha n-ary sumation x<= x+H lambda(n)e(-alpha n)dx=o(XH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{X}<^>{2X} \sup _{\alpha } \left| \sum _{x < n \le x + H} \lambda (n) e(-\alpha n) \right| dx = o ( X H) \end{aligned}$$\end{document}for all H >= X theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \ge X<^>{\theta }$$\end{document} with theta>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta > 0$$\end{document} fixed but arbitrarily small. Previously, this was only known for theta>5/8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta > 5/8$$\end{document}. For smaller values of theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} this is the first non-trivial case of local Fourier uniformity on average at this scale. We also obtain the analogous statement for (non-pretentious) 1-bounded multiplicative functions. We illustrate the strength of the result by obtaining cancellations in the sum of lambda(n)?(n+h)?(n+2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (n) \Lambda (n + h) \Lambda (n + 2h)$$\end{document} over the ranges h{\theta }$$\end{document} and n