Reductivity of the automorphism group of K-polystable Fano varieties

成果类型:
Article
署名作者:
Alper, Jarod; Blum, Harold; Halpern-Leistner, Daniel; Xu, Chenyang
署名单位:
University of Washington; University of Washington Seattle; Utah System of Higher Education; University of Utah; Cornell University; Massachusetts Institute of Technology (MIT)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-00987-2
发表日期:
2020
页码:
995-1032
关键词:
kahler-einstein metrics MODULI SPACES STABILITY EXISTENCE volume
摘要:
We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and Theta-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space.