Rigidity theorems for circle domains

成果类型:
Article
署名作者:
Ntalampekos, Dimitrios; Younsi, Malik
署名单位:
State University of New York (SUNY) System; Stony Brook University; University of Hawaii System; University of Hawaii Manoa
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00921-1
发表日期:
2020
页码:
129-183
关键词:
koebe uniformization removability sets
摘要:
A circle domain omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} in the Riemann sphere is conformally rigid if every conformal map from omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} onto another circle domain is the restriction of a Mobius transformation. We show that circle domains satisfying a certain quasihyperbolic condition, which was considered by Jones and Smirnov (Ark Mat 38, 263-279, 2000), are conformally rigid. In particular, Holder circle domains and John circle domains are all conformally rigid. This provides new evidence for a conjecture of He and Schramm relating rigidity and conformal removability.
来源URL: