On Kronecker terms over global function fields
成果类型:
Article
署名作者:
Wei, Fu-Tsun
署名单位:
National Tsing Hua University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00944-8
发表日期:
2020
页码:
847-907
关键词:
limit formula
drinfeld
ELEMENTS
摘要:
We establish a general Kronecker limit formula of arbitrary rank over global function fields with Drinfeld period domains playing the role of upper-half plane. The Drinfeld-Siegel units come up as equal characteristic modular forms replacing the classical Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. This leads to analytic means of deriving a Colmez-type formula for stable Taguchi height of CM Drinfeld modules having arbitrary rank. A Lerch-Type formula for totally real function fields is also obtained, with the Heegner cycle on the Bruhat-Tits buildings intervene. Also our limit formula is naturally applied to the special values of both the Rankin-Selberg L-functions and the Godement-Jacquet L-functions associated to automorphic cuspidal representations over global function fields.
来源URL: