Shifts of finite type as fundamental objects in the theory of shadowing

成果类型:
Article
署名作者:
Good, Chris; Meddaugh, Jonathan
署名单位:
University of Birmingham; Baylor University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00936-8
发表日期:
2020
页码:
715-736
关键词:
cantor Axiom
摘要:
Shifts of finite type and the notion of shadowing, or pseudo-orbit tracing, are powerful tools in the study of dynamical systems. In this paper we prove that there is a deep and fundamental relationship between these two concepts. Let X be a compact totally disconnected space and f:X -> X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow X$$\end{document} a continuous map. We demonstrate that f has shadowing if and only if the system (f,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,X)$$\end{document} is (conjugate to) the inverse limit of a directed system satisfying the Mittag-Leffler condition and consisting of shifts of finite type. In particular, this implies that, in the case that X is the Cantor set, f has shadowing if and only if (f, X) is the inverse limit of a sequence satisfying the Mittag-Leffler condition and consisting of shifts of finite type. Moreover, in the general compact metric case, where X is not necessarily totally disconnected, we prove that f has shadowing if (f,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f,X)$$\end{document} is a factor of the inverse limit of a sequence satisfying the Mittag-Leffler condition and consisting of shifts of finite type by a quotient that almost lifts pseudo-orbits.
来源URL: