Growth of periodic Grigorchuk groups
成果类型:
Article
署名作者:
Erschler, Anna; Zheng, Tianyi
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite PSL; Ecole Normale Superieure (ENS); University of California System; University of California San Diego
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00922-0
发表日期:
2020
页码:
1069-1155
关键词:
random-walks
upper-bounds
jump-processes
markov-chains
constants
摘要:
On torsion Grigorchuk groups we construct random walks of finite entropy and power-law tail decay with non-trivial Poisson boundary. Such random walks provide near optimal volume lower estimates for these groups. In particular, for the first Grigorchuk group G we show that its growth vG,S(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{G,S}(n)$$\end{document} satisfies limn ->infinity loglogvG,S(n)/logn=alpha 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }\log \log v_{G,S}(n)/\log n=\alpha _{0}$$\end{document}, where alpha 0=log2log lambda 0 approximate to 0.7674\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{0}=\frac{\log 2}{\log \lambda _{0}}\approx 0.7674$$\end{document}, lambda 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{0}$$\end{document} is the positive root of the polynomial X3-X2-2X-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X<^>{3}-X<^>{2}-2X-4$$\end{document}.
来源URL: