Singularities and syzygies of secant varieties of nonsingular projective curves

成果类型:
Article
署名作者:
Ein, Lawrence; Niu, Wenbo; Park, Jinhyung
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; University of Arkansas System; University of Arkansas Fayetteville; Sogang University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-00976-5
发表日期:
2020
页码:
615-665
关键词:
koszul cohomology geometry REGULARITY normality EQUATIONS
摘要:
In recent years, the equations defining secant varieties and their syzygies have attracted considerable attention. The purpose of the present paper is to conduct a thorough study on secant varieties of curves by settling several conjectures and revealing interaction between singularities and syzygies. The main results assert that if the degree of the embedding line bundle of a nonsingular curve of genusgis greater than 2g+2k+p for nonnegative integerskandp, then thek-th secant variety of the curve has normal Du Bois singularities, is arithmetically Cohen-Macaulay, and satisfies the property N-k+2,N-p. In addition, the singularities of the secant varieties are further classified according to the genus of the curve, and the Castelnuovo-Mumford regularities are also obtained as well. As one of the main technical ingredients, we establish a vanishing theorem on the Cartesian products of the curve, which may have independent interests and may find applications elsewhere.
来源URL: