Motivic spheres and the image of the Suslin-Hurewicz map
成果类型:
Article
署名作者:
Asok, Aravind; Fasel, Jean; Williams, Ben
署名单位:
University of Southern California; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); University of British Columbia
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00907-z
发表日期:
2020
页码:
39-73
关键词:
a(1)-homotopy theory
vector-bundles
K-THEORY
cohomological invariants
milnors conjecture
linear-group
HOMOLOGY
sequence
摘要:
We show that an old conjecture of A. A. Suslin characterizing the image of a Hurewicz map from Quillen K-theory in degree n to Milnor K-theory in degree n admits an interpretation in terms of unstable A1-homotopy sheaves of the general linear group. Using this identification, we establish Suslin's conjecture in degree 5 for infinite fields having characteristic unequal to 2 or 3. We do this by linking the relevant unstable A1-homotopy sheaf of the general linear group to the stable A1-homotopy of motivic spheres.
来源URL: