On Falconer's distance set problem in the plane
成果类型:
Article
署名作者:
Guth, Larry; Iosevich, Alex; Ou, Yumeng; Wang, Hong
署名单位:
Massachusetts Institute of Technology (MIT); University of Rochester; City University of New York (CUNY) System; Baruch College (CUNY)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00917-x
发表日期:
2020
页码:
779-830
关键词:
hausdorff dimension
fourier-transforms
averages
摘要:
If E subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E \subset \mathbb {R}<^>2$$\end{document} is a compact set of Hausdorff dimension greater than 5 / 4, we prove that there is a point x is an element of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in E$$\end{document} so that the set of distances {|x-y|}y is an element of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ |x-y| \}_{y \in E}$$\end{document} has positive Lebesgue measure.
来源URL: