Equidistribution of expanding translates of curves and Diophantine approximation on matrices
成果类型:
Article
署名作者:
Yang, Pengyu
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-019-00945-7
发表日期:
2020
页码:
909-948
关键词:
dirichlets theorem
geodesic-flow
homogeneous spaces
systems
points
摘要:
We study the general problem of equidistribution of expanding translates of an analytic curve by an algebraic diagonal flow on the homogeneous space G/Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G/\Gamma $$\end{document} of a semisimple algebraic group G. We define two families of algebraic subvarieties of the associated partial flag variety G / P, which give the obstructions to non-divergence and equidistribution. We apply this to prove that for Lebesgue almost every point on an analytic curve in the space of mxn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} real matrices whose image is not contained in any subvariety coming from these two families, Dirichlet's theorem on simultaneous Diophantine approximation cannot be improved. The proof combines geometric invariant theory, Ratner's theorem on measure rigidity for unipotent flows, and linearization technique.
来源URL: