Mixing solutions for the Muskat problem

成果类型:
Article
署名作者:
Castro, A.; Cordoba, D.; Faraco, D.
署名单位:
Autonomous University of Madrid; Consejo Superior de Investigaciones Cientificas (CSIC); CSIC - Instituto de Ciencias Matematicas (ICMAT); Universidad Carlos III de Madrid; CSIC - Instituto de Ciencia de Materiales de Madrid (ICMM); Complutense University of Madrid; Autonomous University of Madrid
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-021-01045-1
发表日期:
2021
页码:
251-348
关键词:
weak solutions convex integration euler equations well-posedness porous-medium DISSIPATION fluid FLOW
摘要:
We prove the existence of mixing solutions of the incompressible porous media equation for all Muskat type H-5 initial data in the fully unstable regime. The proof combines convex integration, contour dynamics and a basic calculus for non smooth semiclassical type pseudodifferential operators which is developed.