Zero loci of Bernstein-Sato ideals

成果类型:
Article
署名作者:
Budur, Nero; van der Veer, Robin; Wu, Lei; Zhou, Peng
署名单位:
KU Leuven; Utah System of Higher Education; University of Utah; Universite Paris Saclay
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-01025-x
发表日期:
2021
页码:
45-72
关键词:
vanishing proximity systems
摘要:
We prove a conjecture of the first author relating the Bernstein-Sato ideal of a finite collection of multivariate polynomials with cohomology support loci of rank one complex local systems. This generalizes a classical theorem of Malgrange and Kashiwara relating the b-function of a multivariate polynomial with the monodromy eigenvalues on the Milnor fibers cohomology.
来源URL: