Constant mean curvature spheres in homogeneous three-manifolds
成果类型:
Article
署名作者:
Meeks, William H., III; Mira, Pablo; Perez, Joaquin; Ros, Antonio
署名单位:
University of Massachusetts System; University of Massachusetts Amherst; Universidad Politecnica de Cartagena; University of Granada; University of Granada
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-01008-y
发表日期:
2021
页码:
147-244
关键词:
s-2 x r
isoperimetric domains
minimal-surfaces
MANIFOLDS
EXISTENCE
TOPOLOGY
摘要:
We prove that two spheres of the same constant mean curvature in an arbitrary homogeneous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds.
来源URL: