Strong positivity for quantum theta bases of quantum cluster algebras

成果类型:
Article
署名作者:
Davison, Ben; Mandel, Travis
署名单位:
University of Edinburgh; University of Oklahoma System; University of Oklahoma - Norman
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-021-01061-1
发表日期:
2021
页码:
725-843
关键词:
mirror symmetry hall algebras REPRESENTATIONS VARIETIES geometry
摘要:
We construct quantum theta bases, extending the set of quantum cluster monomials, for various versions of skew-symmetric quantum cluster algebras. These bases consist precisely of the indecomposable universally positive elements of the algebras they generate, and the structure constants for their multiplication are Laurent polynomials in the quantum parameter with non-negative integer coefficients, proving the quantum strong cluster positivity conjecture for these algebras. The classical limits recover the theta bases considered by Gross-Hacking-Keel-Kontsevich (J Am Math Soc 31(2):497-608, 2018). Our approach combines the scattering diagram techniques used in loc. cit. with the Donaldson-Thomas theory of quivers.
来源URL: