Minimal submanifolds from the abelian Higgs model

成果类型:
Article
署名作者:
Pigati, Alessandro; Stern, Daniel
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich; Princeton University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-020-01000-6
发表日期:
2021
页码:
1027-1095
关键词:
phase-transitions CONVERGENCE interfaces van 1st
摘要:
Given a Hermitian line bundle L -> M over a closed, oriented Riemannian manifoldM, we study the asymptotic behavior, as epsilon -> 0, of couples(u(epsilon), del(epsilon)) critical for the rescalings E epsilon(u, del)= (M)integral(vertical bar del u vertical bar(2)+epsilon(2)vertical bar F-del vertical bar(2)+1/4 epsilon(2)(1-vertical bar u vertical bar(2))(2)) of the self-dual Yang-Mills-Higgs energy, whereuis a section of Land del is a Hermitian connection on L with curvature F-del. Under the natural assumptionlim sup epsilon -> 0 E-epsilon(u(epsilon), del(epsilon))
来源URL: